Counting the Number of Three Colourings of a Graph

Arturo Velasco, Guillermo De Ita, Adrian Pérez

Faculty of Comg Sci , Al ous University of Pucbla
arturoczak@hotmail.com, deita@cs.buap.mx, adrian_fer2002@hotmail.com

Abstract. The problem of counting the number of three colourings of a graph
G, denoted as #3-Col(G), is a #P-Complete problem for graphs of degree 3 or
higher. We design a novel exact algorithm based on branch and bound
technique for counting the number of three colourings of any graph and we
compare our proposal with the algorithm resulting of apply the Tutte
polynomial of a Graph. We show that if the input graph G does not contain
intersecting cycles then our algorithm computes #3-Col(G) with a linear time
complexity.

1. Introduction

The problem of counting the number of three colourings in a graph G, problem
denoted as #3-Col(G), is a #P-Complete problem for graphs of degree 3 or higher [6],
what means that until now, it's not know an efficient algorithm which computes #3-
Col(G) for any input graph G.

Some algorithms for counting three colouring based on the maximum independent
set are: The algorithms proposed by Dahllof et. al. [4], the algorithms proposed by
Angclsmark et. al. with a complexity time O(1.8171") and O(1.7879") [1,2], the
algorithms proposed by Fiirer et. al. [5], with a complexity time O(1.7702"), being n
the number of nodes of the input graph. For the general case, Bjorklund et. al. [3] has
developed an algorithm to compute P(G,k) the number of k-Colouring of a graph G
with an upper bound in time and space of 0(2"n"), based on the inclusion-exclusion
method.

Those of above procedures were designed for counting colourings of a graph G
based on identifying the Maximum Independent Set of the graph (MIS), a set S of
vertices is a MIS if for every two vertices in S there is not edge of G connecting such
vertices. To find a MIS for any graph is a NP-Complete problem, then it is not
probable to find an efficient algorithm for counting #3-Col(G) based on this theory.
In following sections, we will show different procedures for computing the chromatic
polynomial P(G, A) (the number of ways to colouring the graph G using as maximum
X colours). We design a novel algorithm based on ramification and bound method for
computing #3-Col(G) for any kind of graph. We compare our proposal versus the
procedure resulting of apply the Tutte polynomial of a graph [7].

We also show some graph’s class for which our algorithm computes #3-Col(G) in
polynomial time. Our algorithm does not need to compute the maximum independent
set of the graph G instead, it computes #3-Col(G) bascd on the topological structure

© G. Sidorov, B. Cruz, M. Martinez, S. Torres. (Eds.) Received 19/03/08
Advances in Computer Science and Engineering. Accepted ,’6/()-{/‘08
Research in Computing Science 34, 2008, pp. 15-24 Final version 04/05/08

16 Velasco A., De Ita G. and Pérez A.

of G,. being G, the resulting graph of apply a Depih-First Search (DFS) to the input
graph G.

2. Notation

Let G = (V. E) be a graph with vertex set ¥ = V(G) and set of edges E = E(G). Two
vertices v and w are called adjacent if there is an edge {v,w} € E, connecting them.

The Neighbourhood for x € V is N(x) = {y € V : {xy} € E}. We denote the
cardinality of a sct 4 by || The degree of a vertex x, denoted by 3(x) is [N(x)|, and the
maximum degree of G is A(G) = max{ §(x) : x € V}.

Given a graph G = (V,E), S = (V',E") is a subgraph of G if ¥* < ¥ and E’ contains
cdges {vw} € Esuchthatv € V'andw e V. IfE’ contains every edge {v,w} € E,
then S is called the subgraph S induced by G and is denoted by GJ|S.

Given a sct of colours C, a proper colouring for vertices of a graph G = (V,E) is a
function f: ¥(G) — C such thatif {u,v} € E, then f(u) #/(v).

A graph G is k-colouring if it admits a colouring with k colours. To the minimum &
such that G is k-colourings is called the chromatic number of G and is denoted by

G).
N Let G be a graph with A(G) = k, then A(G) < k + 1 when G is a regular graph, if G
is non-regular graph then A(G) < k.

If G is a bipartite graph, tree or path of size [V] = n = 2 then M(G) = 2 [6]. This is
clear to see since for a bipartite graph each disjoint set ¥, and ¥, are assigned the two
colours. For the case of paths, the two colours are alternated, and for the case of tree
each level of the tree is colouring with one different colour.

If G is a graph that can be coloured with two colours then the #2-Col(G) problem
is solved in polynomial time since the number of 2 colourings of a 2-colourable graph
G is equal to 2°, where c is the number of connected components in G [9].

The number of k-colourings of a graph G can be expressed by a polynomial called
the chromatic polynomial introduced by Birkhoff in 1912 [3), it counts the number of
its A —Colourings, i.e. the number of ways to assign colours to the vertices of G in
such a way that no two adjacent vertices share the same colour.

Let G = (V,E) be a graph and lct be A a positive integer of colours, we call
chromatic polynomial of G, denoted by P(G, 4), to the polynomial in the variable A
that it gives us the number of different ways of colouring G using at most A colours.

Some evaluations for the chromatic polynomial are:

If G is a complete graph (K,) then: P(K,,) =A(A—1)(A—2) = A—n+1).

Let G be a tree or path graph on n vertices then: P(G,A\) =A (A —1)"~ i

If G is a simple cycle then: P(G,) = (A= 1)" + (-1)" * (A — 1), n being the number
of vertices [8,10].

Counting the Number of Three Colourings of a Graph 17

AI rl I * I *l I
P(GA) =L (- 1y!

11 G 1s colouring with 3 colours then:
#3-ColG)-3°(3-1)'-24

P(GR)=(A- 1"+ ()" *(A-1)

If G is colouring with 3 colours then: PGl -1 (A-1y"!

#3-CokG) - (3= 1) +(-1)'* (3-1)~-18 17 G is colouring with 3 colours then:
#3-CokG)~3*(3- 1) - 192

Fig. 1. Computing the Chromatic polinomial and #3-Col(G) over a path, a trce and a cycle.

3. Efficient Counting of 3-Col(G) of a Graph

Although the chromatic polynomial gives us a formula for computing the number of
three colourings when the input graphs is a path, tree or cycle, the formula is not easy
to combine or to apply when the graph has a combination of the above three
topologies. We show here a procedural point of view for computing the number of
three colourings for basic topologies such as: paths, trees, and cycles and for any
combination of those basic topologies and considering that any pair of cycles of the
input graph have not sharing edges.

Given a graph G = (V,E) a 3-Colourings is an assignment f: ¥(G) — {R, 4, B}
(colours) such that if {u,v} € E(G) then f{u) # f{v). We associate to each node v € V
an ordered triple: (a,, By, v,) of integer numbers which carries the number of times
that the node u could be properly coloured with the R, 4 and B colours, respectively.

3.1. Processing Paths

Let G = P,.,(V,E) be a path graph with » vertices: u, u>_ u,and n-1 edges: { u; u;.},
1 <i<n-1. Let Ag be the graph resulting of apply Depth-First Search (DFS) on G.
The resulting graph indicates the order for processing the nodes. The first node (eaf)
in DFS is calculated as (a;, Bi, v1) = (1, 1, 1) since the node could be coloured with
one of the three colours.

For a node u; which is not a leaf node its triple is calculated by the equation:

G =Bi+ i i = 0i +y; Yin=0;+Bi (1)

i.e. a4, is the number of times that the node ;. can be coloured with the colour R, the
same occurs for the values Bj. and ¥+, which give the number of times where the

18 Velasco A.. De Ita G. and Pérez A.

node u;.; is coloured with A and B, respectively. And for the cnd node v, (roof) in the
DFS the number of three colourings is given as #3-Col(G) = a,,+ B, + Y.

3.2. Processing Trees

Let G = (V.E) be a tree graph. The computing of #3-Col(G) is done while G is
traversing in post-order, for the next procedure.

Algorithm: Count_3_Colourings_in_trces(G)
Input: A tree graph G

Output: #3-Col(G)
Procedure: Traversing G in post-order, and when a node v € G is visited, assign:

1) (asPsr)=(1 1) if vis a leaf node in G.

2) Ifvisa father node with a list of child nodes associated, i.e. wy,ua,...,u; are
the child nodes of v, then as we have already visited all the child nodes,
then each triple (&, Buj» ¥)»Jj = 1,...,k has been defined based on (1). (a,/,
By,) is obtained applying (1) over (a:.s, Bis, Yi1) = (s Buj» ¥.)- This step
is iterated until computes all triple (a, By, ¥,5), j = 1,...,k. And finally, let
a,. = l'I‘,~=| Q55 B|-= H‘FI BII; W= l-ij=| Yvj

3) Ifvis the roor node of G then returns (a,+ B, +v,)

This procedure computes #3-Col(G) in time O(n + m) which is the necessary time for

traversing G in post-order.

In the fig. 2 we show two graphs, in both the node 1 is the roof node, in the graph 1
the leaf node is the node 4, and in the graph 2 the /eaf nodes are the nodes 4 and 5,

notice that the step 2 is applied to node 2 in the graph G,.

2) p

(885 (449 (2.22) any

Graph 1. #3-Col(G)) = 24

(32.32.32) [CEEIRICER})
116.16.16)

Graph 2. #3-Col(G:) = 96
Fig. 2. Computing the #3-Col(G) for a path and a tree.

If G is any graph with one vertex, then G can be coloured with anyone of the three
colours. If we add a vertex to G and we connect it to the other vertex, then #3-Col(G)
= 6 since for each colour of the first vertex we can colouring the second vertex with
any colour different to the first vertex, and by the rule of product #3-Col(G) = 3 * 2.

Counting the Number of Three Colourings of a Graph 19

So every time that you add a vertex to G forming a path (or trec) #3-Col(G) is
duplicated, then #3-Col(G) = 3 * 2"~ !, being » the number of vertices.

3.3. Processing Graphs with Simple Cycles

Consider a simple cycle G = ((G), E(G)). it can be decomposed as: G =G’ U {c.},
being G* a path with V(G') = W(G). Then, #3-Col(G) = #3-Col(G") — %1 |{f
€ 3-Col(G"): fluy) = f(u,,) = k}| i.e. we have to subtract the number of colouring in
the cases where f{u1)) is the same that f{u,,).

The equation (1) is apply to G’, and in parallel way we compute |{/ € 3—-Col(G"):
Sn) = flvm) = k}|, k= 1,2,3, we assign the initial triple (a,, B, y,) to the cases starting
Just with the first, second and third colour, generating so three new computing threads
which start with the triples: (1,0,0), (0,1,0) and (0,0,1) respectively . We represent
those three series as: (a;, Bj, Y, i = 1,..,m and k = 1,23 the three colours. The final
triple in each thread considers only the 3-colourings that are the number of colours
which has been assigned the same colour in u, and u,,. Thus we take as last triple of
each thread: (a,, 0, 0); (0, B.., 0) and (0, 0, ,,) for the colours R, 4 and B respectively.

The fig. 3 shows the process to compute #3-Col(G) with a simple cycle and Coly, k
= 1,2,3 the three colours than can be coloured G. Notice that the triples (a;, Bis Yidk
have the same number of threads;-colourings to eliminate i.e. Col, = Col, = Col; since
are symmetrical, then we can only compute in parallel one colour and repeat it.

Cr—C)
U\

(al.pt.yl) (a2, p2.v2) (a3.B3.y3) (a4, B v9)
Processing
(BB g (B88) e (144 g (222) e (LLD simple path

(200) e (233) g L) G OL) g—— (100) Subtracting Col,
020) =323 = (2) —10) gL Subtracting Col;
(002 (332 g (L12) g (LLO) g (00 Subtracting Coly

(666) P #3-Col(G) = #3-Col(G) ~ £, |If € 3CA(G)
#3-Col(G) = (8,8.8) - 1(2,0,0) + (0,2,0) ¢ (0,0,2)) =(6,6,6)= 18

Fig. 3. Counting #3-Col(G) over simple cycle.

We can combine the above procedures, for processing paths and cycles, in one
procedure called Linear #3-Col(G) which allow us to processing any path or simple
cycle that appear into a more complex graph. The procedure Linear_#3-Col(G) has a
linear time complexity on the size of the path or the cycle which it processes since we
have seen in this section how to process such topologies on linear time.

20 Velasco A., De Ita G. and Pérez A.

4. Computing #3-Col(G) in the General Case

If G = (V,E) is any graph, e.g. G has intersecting cycles then an exponential algorithm
to compute P(G, A) can be computed based on the Tutte polynomial [7]. The branch
and bound is based on the contraction and deletion of edges rule. The graph G /eis
obtained of G removing the edge € and identifying both incident vertices and merge
them, this procedure is called a contraction of the two vertices. The mere deletion of
the edge € in G results in the graph G\ e with same vertex set ¥ and new edge set £ —
{e}. The algorithm consists in apply the recurrence:

P(G,) =P(G\e,\)-P(G/e,7) 2)

Provided that G is connected and that € is neither a loop nor a bridge edge (i.e. an
edge whose deletion does not disconnect the graph).

Let u, v € E, be a pair of vertices in G=(¥,E) such that u, v are joined by the edge
e. Then P(G \ e, }) (P(G) without edge €) can be coloured from 2 ways: when a
different colour is assigned to and v, and when the same colour is assigned to both.
Note that the first case is: P(G, A) because the edge e are present and therefore v and
v both can not have same colour. The second case is P(G / e, A) because in the
contraction we force that and v both have the same colour.

So the equation (3) is derived of (2).

P(G\e,\)=P(G,\) +P(G/e,N) 3)

Finally, the chromatic polynomial of a (possibly disconnected) graph is the product
of the chromatic polynomials of its connected components.

P(G/e,N)

P(G,)) P(G\e)
If G is colouring with 3 colours then #3- If G is colouring with 3
Col(G) colours then:

=(2°-2)-[3*2)-(3"2)] #3-Col(G) = 2°- 2 / \
=32-(24-12)
=18

P(G\e,2) PGleny
I G is colouring with 3 Ir IG is colouring with 3
colours then: 'ff’ ours then: X
#3-Col(G) =3+ 2 #3-Col(G) =3 * 2}

Fig. 4. Apply contraction and deletion algorithm (2).

Counting the Number of Three Colourings of a Graph 21

The fig. 4 shows a graph G with intersecting cycles and the form to apply (2) in
order to obtain in this case #3-Col(G). You can sce that the recursion is applied twice

since the chromatic polynomial neither can compute a cycle and a path in a single
recursion.

On the other hand, we design a novel way to compute #3-Col(G) for any graph, we
present here our proposal. We design a new split rule for choosing the best node to

assign a colour, this split rule follows the idea developed in the classic Davis and
Putnam method [2].

Let G = (V,E) be a graph with |V] = n, |E| = m and such that A(G) > 2. Let Tg be the
resulting DFS graph of G. We assume that T is connected and has intersecting

cycles. Let C = {C), Cy,..., Ci} be the set of fundamental cycles stored in the matrix
CM. The idea is to choose a node v that is part of intersecting cycles, to assign it a

colour and eliminate it marking the neighbourhood nodes to restrict them to another
colour different to the assigned to v.

Algorithm General_3Colourings(Tc)

Input: Tg: a DFS graph of a cyclic graph G

Output: #3-Col(G): the number of three colourings of G.

1. Apply Linear_#3-Col(G) to Tg in order to process every simple paths and simple
cycles that T could have. This step processes e.g. any node of degree 1. We consider
that after to processing a subgraph type: path, tree or cycle, this subgraph is

contracted into a single fat node with the total triple value of such substructure
associated to such fat node.

2. Take S = {v € V: v is part of an intersecting cycle in T}. We search for the node v
€ S such that v is part of a back edge e, and 8(v) = max{ 8(u) : u € S}. If 5(v) = 8(u)
and v and » have maximum degree in S, we select the node v € S such that its dual
degree 8(N(v)) = Z,emv (1) is maximum into the nodes of S. Notice that the edge e,

determines a base cycle C, and there is at least other cycle C, determined by other
back edge e; since C, and C; are intersected in Tg.

3. We apply a splitting reduction rule, being v the selected node for performing the
splitting. The rule generates three new subgraphs from Tg: G,, G, and G;, which are
formed as T — {v}. We consider that v was assigned one of three colours, and for any
node u € N(v), u is restricted to not set the same colour assigned to v.

Since v is part of a back edge e, v is not an articulation point in T given that every
path crossing by v in Tg, goes now by the other back edge e, in G; = 1, 2, 3. Thus,
each G, i=1, 2, 3 is still a connected graph. And for each subgraph G; =1, 2, 3 we
have that |V}| = n; = n-1, |E| = m; < m-3, and the number of base cycles in G; is nc;=m;
—ni+1<m-3-n-1)+1=m-n-1,thisis, nc;<nc-2 fori=1,2,3. Then, in
each G;, i=1, 2, 3 there are at least two cycles less than in Tg.

The application of the splitting rule reduces the number of intersecting cycles by at

least two, and builds also an enumerative ternary tree Eg, where each of its nodes has
associated a subgraph of Tg.

4. Once the splitting rule is applied on Tg, the linear procedure Linear_#3-Col(G) is
employed again on each subgraph G, i =1, 2, 3 for processing every new sequence of
nodes (paths) and simple cycles that could appear.

22 Velasco A., De Ita G. and Pérez A.

5. The splitting rule is applied repeatedly on each subgraph associated with each node
of Eg, whenever in such subgraph remain intersecting cycles.

6. When the associated graph G, of a node of Eg does not have intersecting cycles,
then #3-Col(G;) is computed applying the procedures showed in previous sections.
And, in such case the node is a leaf node of £ and does not require the application of
the splitting rule. We now have H(EG) = {Gy. Gy is the graph associated to a /eaf'node

of Eg}.
7. After Eg has been built, we have that #3-Col(G) = Zg e e a)#3—Col(G).

The fig. 5 shows our procedure for counting #3-Col(G) on a graph G with

intersecting cycles. Notice that cach subgraph generated by the splitting rule is

symmetric.

Graph G I]

Step 2. Node 3 contains a back edge of an elemental cycle and 8(v) = max {8(w): v €S}.

The *** indicates the constraint for assign the same colour.

Fig. 5a. Appling splitting reduction on 7g (the resulting graph of apply DFS of G).

Restricting the colour R Restricting the colour A Restricting the colour B

. . .
‘ 0,3.3) 0 (3,0,3) 0 (3,3,0)
Do @Qw Do

- » *

0 LD ° 1,0.n ° (1,1,0)
Qe Q. ()w
Step 3. Splitting rule generates three subgraph idered that the node 3 was coloured with the
colours R, A and B respectively. The #3-Col(G) = (0 +3 +3) +(3+0+3) +(3+ 3 +0)= I8

Fig. 5b. Colouring each subgraph with the colours R, 4, and B respectively.

Counting the Number of Three Colourings of a Graph 23
5. Time Complexity of the Algorithm

Let G = (V,E) be a graph with |V] = n, |E| = m and such that A(G) > 2 for the algorithm
General_3Colourings(Tg) the steps 1, 2, 4, 6 and 7 have linear time complexity, in
fact they are O(m + n). The recursive procedure of splitting when G has intersecting
cycles is applied, and its reduction generates three new subgraphs H;.

The splitting rule selects a node v, such that §(v) > 3 and which is eliminated in
every subgraph H;, either the colour: {R, 4, B} is assigned to the nodes of N(v). In
fact, for each node v € N(v) at least one of its incident edges has been removed from
G to Hi. The time behaviour of the algorithm resides in step 5 and corresponds to the
number of intersecting cycles on the graph associated with each node of Eg. Let nc be
the variable used for denoting the number of cycles in a graph associated with a node
of Eg. For example the number of cycles in a node graph G is givenas nc=m—n+ 1.

The splitting rule opens three new branches with three associated subgraphs Hi and
how the node v is deleted in each subgraph thenn;=n—-1,m; < m—3,sonci=m; —
m+1<m-3-(m-1)+1=m-n-1=nc-2,i=1,2,3. Thus each subgraph has at
least two intersecting cycles less than G.

Then, the recurrence for the splitting rule (step 5) is: T(nc) = 3 * T(nc — 2) = 3* *
T(nc — 2 * k). Such recurrence ends when nc — 2 * k=1, that is when k= (nc - 1) / 2
=(@m-n+1-1)/2=(n-n)/2 In consequence, the time complexity of our
proposal is T(nc) € O3™ ~™'2 * poly(n, m)). For the worst case, we consider that

every pair of cycles appearing in any subgraph are intersecting, then nc=m - n + 1
and so:

0@ "2 % poly(n, m)) =O(1.732%" " * poly(n, m)) (C))

is an upper bound for the time complexity of our algorithm, » and m being the number
of nodes and number of edges of the input graph, respectively.

6. Conclusions

The k-colouring of a graph is a classical problem that it is not computed in polynomial
time for any k£ > 3. We have shown a novel and exact algorithm to compute the
number of 3-colourings based on the topological structure of G. When G is a path,
cycle or tree we have designed polynomial algorithms for computing #3-Col(G) in
linear time, in fact with an upper bound for the worst case of O(n + 1), n and m being
the number of nodes and edges of the input graph.

We have presented two different strategies for processing graphs with any
topology. The second of the strategies is a novel idea that we propose, for computing
the number of three colourings for any input graph.

24 Velasco A., De Ita G. and Pérez A.

References

1. O. Angelsmark, P. Jonsson, S. Linusson, J. Thapper, Determining the number of solutions
to a binary CSP instance, LNCS 2470:327-340, 2002.

2. O. Angclsmark, P. Jonsson, Improved Algorithms for counting Solutions in Constraint
Satisfaction Problems, /nt. Conf. on Constraint Programming, LNCS 2003.

3. A. Bjorklund, T. Husfeldt, Inclusion-Exclusion Based Algorithms for Graph Colouring,
ECCC Report TR06-044, March 2006

4. V. Dahllof, P. Jonsson, M. Wabhlstrdm, Counting models for 2SAT and 3SAT formulae.
Theorical Computer Sciences, 332(1-3): 265-291, 2005.

5. M. Firer, S.P. Kasiviswanathan, Algorithms for Counting 2-SAT Solutions and
Colourings with Applications, Electronic Colloquium on Computational Complexity, No.
33, 2005.

6. C.Greenhill, The complexity of counting colourings and independent sets in sparse graphs
and hypergraphs”, Computational Complexity, 9(1), 2000, pp. 52-72.

7. M. Noy, Tutte Polynomials in Square Grids, Algorithms Seminar, 2000, available online
in hnp://algo.inria.fr/seminars/

8. N. Alon and M. Tarsi. Colourings and orientations of graphs, Combinatorica, 12:125-134,
1992.

9. F. Jaeger, D.L. Vertigan, D.Welsh, On the Computational Complexity of the Jones and
Tutte polynomials, Mathematical Proceedings of the Cambridge Philosophical Society,
108, 1990, p.p.35-53.

10. hnp://en.\vikipedia.org/\viki/Graph_coloring

